

Tyler Westerberg
Tim Howell

Jacob Olstad
Steve Dorenkamp

Seth Schmidt

IVEND – INFRARED DETECTION
Team Dec15-10
 with Dr. Wang and Fawn Engineering

1 | P a g e

Contents
Project Design ... 3

Hardware: ... 3

Firmware: .. 3

Hardware .. 4

Block Diagram ... 4

Figure 1 Block Diagram of the System .. 4

Schematic .. 4

PCB Boards .. 4

LPC1111 .. 4

Figure 2 LPC11xx ... 5

IR LEDs ... 5

Figure 3 IR LED .. 5

RED LED ... 5

Detectors ... 5

Figure 4 TSSP4038 ... 6

Spacing .. 6

Input/Output ... 6

Firmware ... 6

Block Diagram ... 6

Figure 5 Firmware Block Diagram ... 6

Interface .. 6

Signal Output .. 6

LED Modulation .. 7

Calibration ... 7

Object Detection ... 7

Fault Detection .. 7

Implementation Details .. 7

Testing Process and Testing Results ... 8

Figure 6 Testing Board 1 ... 8

Figure 7 Testing Board 2 ... 9

Figure 8 Testing Boards Together ... 9

Figure 9 Test Results from Original iVend – 48.33% Detection .. 9

2 | P a g e

Figure 10 Test Results from Original iVend w/ Reduced Intensity – 62.5% Detection 10

Figure 11 Test Results from iVend Prototype w/ 1 LED, 8 Detectors – 32.6% Detection 10

Figure 12 Test Results from the iVend Redesign – 95.83% Detection .. 10

Figure 13 Test Results from the updated iVend Redesign – 99.6% Detection 10

Appendix I Operation Manual ... 11

Parts List .. 11

Setup ... 11

Figure 14 – Setup Step 1 ... 11

Figure 15 – Setup Step 2 ... 11

Figure 16 – Setup Step 3 ... 12

Figure 17 – Setup Step 4 ... 13

Figure 18 – Setup Step 5 ... 13

Figure 19 – Setup Step 6 ... 14

Figure 20 – Setup Step 7 ... 14

When Setup is Complete .. 15

Appendix II: Alternative Versions: .. 16

Figure 21 Schematic of Calibration Circuit to be used in our system ... 16

Figure 22 Schematic of Proposed Alternate Calibration Circuit ... 17

Appendix III: Other Considerations: .. 18

Appendix IV: Schematics ... 19

Figure 23 Board dimensions 1 ... 19

Figure 24 Board dimensions 2 ... 19

Figure 25 Power conditioning circuit .. 19

Figure 26 Open collector output ... 20

Figure 27 Microcontroller ... 20

Figure 28 Detector .. 21

Figure 29 LED Power ... 21

Figure 30 LED Select circuit ... 22

Appendix V: Code .. 23

3 | P a g e

Project Design
The system we are dealing with in this project has two main parts, one composed of hardware,

and the second composed of software. The hardware element is our PCB (see appendix B) boards.

These boards are responsible for detecting when a product is vended and passes through the IR field.

Once this is detected, our software element needs to alert the vending machine’s separate on-board

controller. The system should be able to detect an item with dimensions 1.912” x 3.029” x 0.028” or a

sphere with diameter 0.338”. The system operates by modulating one led at a time at 38 KHz. The

system then uses the IR detectors to see if the IR light has crossed the bin. If the IR light is present the

system then turns off the LED and moves on to the next. If the IR light is not present the system

considers this a detection and will signal to the main vending machine controller that an object has been

detected.

Hardware:
The boards that we developed for the new system has several key components. They have IR emitters

and sensors for detecting a product and they have an LED (see appendix B) for notifying when a product

has been detected. The IR emitters essentially create a light curtain that is detected by the sensors.

Emitters for these boards were chosen so that they are capable of sending IR streams to each sensor,

but that they are narrow enough to cut down the reflection from the tray. When the sensors do not

detect an IR stream for a given amount of time, they will pull the output signal to active to indicate a

product has been vended. When the output signal is pulled active, the LED will switch to the off

position, indicating that the IR curtain has been broken. This light will remain off until the IR curtain is

no longer blocked. The amount of emitters and sensors, as well as the configuration, was decided based

upon that which will achieve the greatest results and keep costs low.

Firmware:
The firmware will not be notified when a product is vended, and therefore will operate continuously. If

the IR light is seen by the detectors the firmware will consider this a no vend. If the IR light is not

detected the system will communicate back that an additional vend is required. On startup the

firmware will be responsible for calibrating the LEDs. This will be done by adjusting the voltage they see.

The firmware will start at the lowest voltage available and step it up until the detectors can see the

LEDs. Once this is accomplished the firmware will resume normal operation.

4 | P a g e

Hardware

Block Diagram

Figure 1 Block Diagram of the System

Schematic
 See Appendix IV

PCB Boards

 There are two, two layer PCB boards. The first board holds the 10 IR detectors, the processor,
and the communication back to the main vending machine system. It also holds a visual indicator of
when an object is detected. The second board holds the 10 IR LEDs. There is a cable that connects both
boards.

LPC1111
 The LPC1111 is the main processing unit for or project. It is responsible for modulating the IR

LEDs and determining when an object has passed through the IR mesh based on sensor feedback. The

LPC1111 will also blink an LED and pull a signal line low when an object is detected. The LPC1111 was

chosen due to its low cost and high performance for the application. This should allow the system to

grow in the future without the need for a new microcontroller.

5 | P a g e

Figure 2 LPC11xx

IR LEDs
 The IR LEDs are modulated at 38 KHz and are responsible for creating an IR mesh that an object

will break when falling through. They sit on the opposite end of the bin as the detectors and only one

will be switched on at a time.

Figure 3 IR LED

RED LED

 A single red LED will be present on the detection board so that operators can have a visual
indication of when an object is detected. This LED will need to be prominently displayed so the operator
can easily see it.

Detectors
 The detectors are digital and designed to filter for the 38 KHz signal the IR LEDs are modulated

at. We chose the TSSP4038 from Vishay to accomplish this as they are designed to do exactly that.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj6hvy15L_JAhVKQSYKHelyDWoQjRwIBw&url=http://www.ebv.com/products/product-details/3850/&psig=AFQjCNFA2G3Gc7j4oRkN9UIrQlZRmKsziA&ust=1449235314335810

6 | P a g e

Figure 4 TSSP4038

Spacing
 The detectors and emitters are spaced such as to reduce the area that an item would fall out of

line of sight between an emitter detector pair. This was calculated and modeled in Matlab in order to

find the ideal number of emitter detector pairs and their ideal spacing. (See Appendix A)

Input/Output
 The hardware shall provide one open collector signal output ports. The only input to the board

shall be a 5VDC power source.

Firmware

Block Diagram

Figure 5 Firmware Block Diagram

Interface
 The only human interface that is available is a single red LED that is kept on during normal

operation and turned off if an object is detected.

Signal Output
 The firmware shall turn on a single GPIO port that will be used to signal when an object is

detected. If an object is detected the line is on for 150ms and then turned low again.

Output to

Machine

LPC1111

IR LEDs

Detectors

38 KHz

PWM

Detection

Logic

Output

Logic

7 | P a g e

LED Modulation
 The firmware is responsible for modulating the IR LEDs at a frequency of 38 KHz in order to filter

out other IR interference. The LEDs are turned on one at a time in order to make sure that each

detector can see each LED. This is accomplished by switching the GPIO (see appendix B) pins to turn on

or off certain LEDs. Each pin shall than be switched in and out when needed.

Calibration
 The firmware goes through a calibration on start up to set the ideal LED intensity. This is done

using our calibration circuit (see Appendix A). The program will set the LEDs to the lowest intensity and

check if all detectors can see all LEDs. If it is successful, this is the ideal intensity. If it is unsuccessful, it

will increase the intensity slightly and start the check again. This will repeat until the ideal intensity is

found.

Object Detection
 The firmware processes the signals from the IR detectors in order to determine when an object

is or is not blocking the path. This is accomplished by checking the output signal of each detector and

verifying it is correct.

Fault Detection
 On startup the firmware will be responsible of ensuring that all LEDs can be seen by each

detector. If for any reason the firmware cannot accomplish this it will keep the output line low to signal

that a fault has been detected.

Implementation Details
 Numerous considerations were made while implementing new designs with the current ones.

Many of the constraints played a factor to the implementation of the new designs. These constraints

include:

 Cost

 Number of emitters and detectors

 Board dimensions

 System dimensions

 Retrofitting

 Reflections inside the system

 Components used

 Light intensity

Retrofitting machines with an updated product detection system was one of the first major

concerns during implementation. The dynamics of the system changes with every model of machine, so

while the dimensions of the PCBs could not change, the length from the emitters to the detectors would

need to be considered. Since light intensity was a major concern, the varying lengths would most likely

need a calibration system to compensate for the various systems.

8 | P a g e

Cost was also an important consideration during design implementations. If there was a need to

upgrade the emitters and detectors, the current microprocessor would only support two more emitters

and two more detectors due to the remaining GPIO pins available. Any additional emitters/detectors

would result in the need to upgrade the microprocessor, which along with the increased cost of emitters

and detectors, would also increase the overall cost of the PCBs.

Testing Process and Testing Results
 The testing phase of this project was very rigorous. Our aim was to make the infrared matrix
work with 100 percent success rate. Since it could take up to a few hundred product deliveries before an
error occurred with the original system, much time and consideration was put into testing. It was very
critical that our testing method was repeatable and quantitative.

This testing included:

1.) Finding out what components work best at detecting objects

2.) Determining if reflection inside the delivery bin was an issue

3.) Making sure the firmware code is properly checking vended items

4.) Examining outside light sources and testing whether certain lights interfere with the infrared

matrix

Diagrams of our testing boards are shown below. We will use these boards to be able to test 360 unique

points in the IR array for holes by placing a zip-tie in each whole three times and recording how many

times it was detected.

Figure 6 Testing Board 1

9 | P a g e

Figure 7 Testing Board 2

Figure 8 Testing Boards Together

 With these testing methods in place we were able to test various different design ideas

including simply decreasing the intensity of the LEDs, shrouding the shell of the bin in black cloth to

reduce reflections, adding LEDs and detectors, etc. Some of these testing results are shown below:

Figure 9 Test Results from Original iVend – 48.33% Detection

10 | P a g e

Figure 10 Test Results from Original iVend w/ Reduced Intensity – 62.5% Detection

Figure 11 Test Results from iVend Prototype w/ 1 LED, 8 Detectors – 32.6% Detection

Figure 12 Test Results from the iVend Redesign – 95.83% Detection

Figure 13 Test Results from the updated iVend Redesign – 99.6% Detection

 Our new design is not quite perfect, but some of that can be attributed to a manufacturer defect

where the detectors were not spaced as designed. The third detector from the right is incorrect, as seen

in figure 12. In figure 13 we changed the code to have 5 detectors reading at a time to allow us to lower

the intensity on the emitters thereby increasing our detection in our outside rows. We also moved the

misplaced detector to the right position. With the new code, and the corrected detector, we can see

that the detection increases to approximately 99.6%.

11 | P a g e

Appendix I Operation Manual

Parts List
- Detector Board

- Emitter Board

- Detector/Emitter Interconnect Cable (Cable 1)

- Main Computer Board Cable (Cable 2)

Setup
Step 1: Connect one end of cable 1 to the 7-pin header on the detector board.

Figure 14 – Setup Step 1

Step 2: Connect the corresponding end of cable 2 to the 6-pin header of the detector board.

Figure 15 – Setup Step 2

12 | P a g e

Step 3: Mount the detector board on the white plastic stand-offs on the side of the bin closest to the

main controller board, with the detectors facing into the bin.

Figure 16 – Setup Step 3

Step 4: Run the loose end of cable 1 through the cable routing slot provided.

13 | P a g e

Figure 17 – Setup Step 4

Step 5: Connect the end of the cable you’ve just routed to the header on the emitter board.

Figure 18 – Setup Step 5

14 | P a g e

Step 6: Mount the emitter board on the white plastic stand-offs across from the emitter board, with the

emitters facing into the bin.

Figure 19 – Setup Step 6

Step 7: Connect the loose end of cable 2 to the header on the main controller board.

Figure 20 – Setup Step 7

15 | P a g e

When Setup is Complete
 From this point on, the system should run automatically. You can verify the iVend is functioning

by turning on the power and moving an object in and out of the detection zone and watching the red

LED mounted on the detector board. The LED should turn off or blink when an object enters the field.

16 | P a g e

Appendix II: Alternative Versions:

Figure 21 Schematic of Calibration Circuit to be used in our system

17 | P a g e

Figure 22 Schematic of Proposed Alternate Calibration Circuit

One idea of the design was to use all detectors all the time which as specified earlier gave us a 95.83%

detection rate. Our current design we are planning to use increases our detection rate to 97.86% by only

using 5 detectors at a time. The system works by utilizing the detector directly across from the currently

pulsing LED and the 2 detectors on either side. If an outside LED is on, then we only use the detector

directly across from it and the 2 detectors inside of it. This allows us to reduce the power through each

LED by not requiring all detectors to see the current emitter that is on, thereby minimizing possible

reflections.

18 | P a g e

Appendix III: Other Considerations:

While we were pleased with our final testing results, that showed an improvement in detection rate to

95.83%, we feel as though this is actually lower than what the system can obtain for several reasons.

The final boards that were provided to us had a manufacturer defect in which one of the detectors was

misplaced. This can be seen in our test results where we have a hole in the first few columns of row C.

Once this detector is placed in the correct location, we believe the hole will be eliminated, raising our

detection rate up to 96.55%. For the system in which we only view 5 detectors at a time, we believe our

detection rate will get raised to 100% with proper part placement.

We also feel the detection rate could be increased if a larger object was used. The test results we

obtained were completed with a screw with a diameter of roughly 0.25”. If we were to use an object

that was the same size as the minimum requirements, 0.338”, we feel as though the detection rate

would also increase. An object with a larger diameter was not tested because the testing board would

not fit an object that large through its holes, so an additional testing system would have had to be

created.

This project was unique in that it was a revision to a current design, rather than a project that asked us

to develop a system from scratch based upon their needs. The importance of this was mainly in the fact

that the new system would replace the current system in their machines that are already in used.

Because of this, we needed to improve upon their current design, rather than having the option to go in

a completely different direction.

Having contacts at Fawn Engineering that were willing to help us in any way made a huge difference in

the project for us. Right from the start they provided us with plenty of resources. Within in the first two

weeks they sent us a full size vending machine (with some candy), a testing tray set up, and three sets of

the current boards. They were also very helpful in the process of creating the new boards. We provided

Fawn with our schematics and they took the reins from there as far as getting the boards built and

shipped to us in roughly two weeks. Their staff was also very helpful in discussing new ideas with the

calibration circuit.

The main lessons we learned from this project dealt with the design processes itself rather than our

specific system. We learned that it is very important to get all of the constraints and objectives upfront,

and then go over them together to make sure everyone is on the same page. There were a few instances

late in our design where we had to consider new constraints to the system that we were not initially

aware of. Another lesson was in documenting progress. We found it was easy to get wrapped up in

testing and in the technical side of the project, but then when the documentation is needed we hadn’t

kept up with it as well as we should of. Although in the end we were able to fully document the project,

it would have made it easier on us to spend a little time at the end of each meeting to put some notes

together for future use.

19 | P a g e

Appendix IV: Schematics

Figure 23 Board dimensions 1

Figure 24 Board dimensions 2

Figure 25 Power conditioning circuit

20 | P a g e

Figure 26 Open collector output

Figure 27 Microcontroller

21 | P a g e

Figure 28 Detector

Figure 29 LED Power

22 | P a g e

Figure 30 LED Select circuit

23 | P a g e

Appendix V: Code
/* Definitions.h

 *

 * Created on: Nov 30, 2015

 * Author: Jake

 */

#ifndef DEFINITIONS_H_

#define DEFINITIONS_H_

#define BIT0 0x01

#define BIT1 0x02

#define BIT2 0x04

#define BIT3 0x08

#define BIT4 0x10

#define BIT5 0x20

#define BIT6 0x40

#define BIT7 0x80

#define BIT8 0x100

#define BIT9 0x200

#define BIT10 0x400

#define BIT11 0x800

// define LED high

#define nLED_High_1 BIT2

#define nLED_High_2 BIT3

#define LED_Low_1 BIT4

#define LED_Low_2 BIT5

#define LED_Low_3 BIT6

#define LED_Low_4 BIT7

#define LED_Low_5 BIT8

#define LED12_Port 3

#define LED345_Port 0

#define LEDHigh_Port 0

#define LEDPOWER0_PORT 3

#define LEDPOWER1_PORT 2

#define LEDPOWER23_PORT 0

#define LEDPOWER0 BIT2 // P3.2

#define LEDPOWER1 BIT0 // P2.0

#define LEDPOWER2 BIT4 // P0.4

#define LEDPOWER3 BIT5 // P0.5

#define DEC1 BIT0 // P0.0

#define DEC2 BIT1 // P1.1

#define DEC3 BIT2 // P1.2

#define DEC4 BIT4 // P1.4

#define DEC10 BIT11 // P1.11

#define DEC5 BIT5 // P1.5

#define DEC6 BIT6 // P1.6

#define DEC8 BIT9 // P1.9

#define DEC9 BIT10 // P1.10

24 | P a g e

#define DEC7 BIT8 // P1.8

#define LED_SIG BIT7 //P1.7

#define LED_SIG_PORT 1

#endif /* DEFINITIONS_H_ */

/*

 * Globals.h

 *

 * Created on: Dec 1, 2015

 * Author: Jake

 */

 #include "Definitions.h"

#ifndef GLOBALS_H_

#define GLOBALS_H_

// char to index through to get the led we want

extern unsigned int led_index; // we only have leds on pins 4-8

// char to tell if the led should be active or not

extern unsigned char led_active;

extern unsigned char pulse_count;

extern unsigned char led_high_index; // only high switch on pins 2/3

extern unsigned int delay; // time to leave led on for.

extern unsigned char mask_i;

extern unsigned int dec_mask[10];

#endif /* GLOBALS_H_ */

/*

 * init.h

 *

 * Created on: Dec 2, 2015

 * Author: Jake

 */

#ifndef INIT_H_

#define INIT_H_

 void _init(); // function will call all startup stuff

 // set up function

 void _led_dir_set(); // function to set pin directions

 void _led_pin_set(); // function to set pin high/low

 void _power_dir_set(); // function to set led power direction

 //void _power_pin_set(); // function to set led power high/low

 void _timer_std(); // function to set timer up

#endif /* INIT_H_ */

/*

 * LED_Functions.h

25 | P a g e

 *

 * Created on: Nov 30, 2015

 * Author: Jake

 */

#ifndef LED_FUNCTIONS_H_

#define LED_FUNCTIONS_H_

#include "Definitions.h"

#include "LPC11xx.h"

#include "Globals.h"

// running function

void _leds_off(); // function to turn all leds off

void _led_index(); // logic for led indexing

void _dec_check();

unsigned char _dec_check_cal();

void _led_index_normal();

#endif /* LED_FUNCTIONS_H_ */

/*

 * Calibration.h

 *

 * Created on: Nov 30, 2015

 * Author: Jake

 */

#ifndef CALIBRATION_H_

#define CALIBRATION_H_

#include "LED_Functions.h"

#include "Definitions.h"

#include "LPC11xx.h"

#include "Globals.h"

void _power_pin_set(); // function to set led power high/low

void _power_up(unsigned char power_lvl); // function will increment the power

setting.

#endif /* CALIBRATION_H_ */

/*

===

==

===

==

 Name : iVend_11.c

 Author : $(author)

 Version :

 Copyright : $(copyright)

 Description : main definition

 // set SYSPLLCLKSEL_Val to 0 in system_lpcxxx

===

==

*/

26 | P a g e

#include "LPC11xx.h"

#include "Calibration.h" // header for calibration function

#include "LED_Functions.h" // header for functions that control led logic

#include "Definitions.h" // define statements (BIT defs, LED defs, etc)

#include "Globals.h" // Global Values for everyone

#include "Init.h" // initialization

// set global values

unsigned int led_index = LED_Low_1; // we only have leds on pins 4-8

unsigned char led_active = 0;

unsigned char pulse_count = 0;

unsigned char led_high_index = nLED_High_2; // only high switch on pins 2/3

unsigned int delay = 10000; // time to leave led on for.

unsigned char mask_i = 0;

unsigned int dec_mask[10] =

 {

 (DEC1 + DEC2 + DEC3 + DEC4),

 (DEC1 + DEC2 + DEC3 + DEC4), (DEC1 + DEC2 + DEC3 + DEC4),

 (DEC2 + DEC3 + DEC4 + DEC5 + DEC6), (DEC3 + DEC4 + DEC5 + DEC6 + DEC7),

 (DEC4 + DEC5 + DEC6 + DEC7 + DEC8), (DEC5 + DEC6 + DEC7 + DEC8 + DEC9),

 (DEC6 + DEC7 + DEC8 + DEC9 + DEC10), (DEC8 + DEC9 + DEC10), (DEC8 + DEC9 +

DEC10)

 };

int main(void) {

 // Force the counter to be placed into memory

 volatile static int i = 0 ;

 // initialize everything

 _init();

 // power calibration

 //power_lvl_end = _power_pin_set_end();

 _power_pin_set();

 // reset leds after calibration to kown state

 _leds_off();

 LPC_GPIO0->DATA &= ~nLED_High_1; // turn high on

 led_index = BIT4;

 led_high_index = nLED_High_2;

 mask_i = 4;

 // reset what led we are on

 // enable clock interrupt

 NVIC_EnableIRQ(TIMER_16_0_IRQn);

27 | P a g e

///

 // start normal operation

 while(1) {

 i++ ;

 if(pulse_count > 20)

 {

 pulse_count = 0;

 led_active = 1;

 }

 // if to increment leds

 if(pulse_count > 14 && led_active == 1)

 {

 led_active = 0; // toggle led active

 _leds_off(); // turn the high/low off

 _led_index_normal(); // index the led location

 }

 if(pulse_count > 14)

 {

 if(LPC_GPIO1->DATA & dec_mask[mask_i])

 {

 LPC_GPIO1->DATA |= LED_SIG; // turn signal on

 for(i = 0; i < delay; i++)

 {

 }

 LPC_GPIO1->DATA &= ~LED_SIG; // turn signal off

 }

 }

 } // end of while(1)

 // end of normal operation

///

 return 0 ; // should never reach this

}

///

// interrupts

void TIMER16_0_IRQHandler(void)

{

 pulse_count++; // increment pulse count

28 | P a g e

 // if leds are active toggle on off

 if(led_active == 1)

 {

 if(led_index == BIT6 || led_index == BIT7 || led_index == BIT8)

 {

 LPC_GPIO0->DATA ^= led_index;

 }

 else

 {

 LPC_GPIO3->DATA ^= led_index;

 }

 }

 LPC_TMR16B0->IR |= BIT0;

}

///

#include "LPC11xx.h"

#include "Definitions.h"

///

// functions

void _led_dir_set()

{

 // start with led outputs

 LPC_GPIO3->DIR |= LED_Low_1 + LED_Low_2 ;

 LPC_GPIO0->DIR |= LED_Low_3 + LED_Low_4 + LED_Low_5;

 LPC_GPIO0->DIR |= nLED_High_1 + nLED_High_2;

 LPC_GPIO1->DIR |= LED_SIG;

}

void _led_pin_set()

{

 // set all leds as off to start

 LPC_GPIO3->DATA &= ~(LED_Low_1 + LED_Low_2);

 LPC_GPIO0->DATA &= ~(LED_Low_3 + LED_Low_4 + LED_Low_5);

 LPC_GPIO0->DATA |= (nLED_High_1 + nLED_High_2);

 LPC_GPIO1->DATA &= ~LED_SIG;

}

void _power_dir_set()

{

 // set up power out for now use Linear power circuit

 LPC_GPIO3->DIR |= LEDPOWER0;

 LPC_GPIO2->DIR |= LEDPOWER1;

 LPC_GPIO0->DIR |= LEDPOWER2 + LEDPOWER3;

}

29 | P a g e

/*

void _power_pin_set()

{

 // only turn on LEDPOWER0

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1;

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

}

*/ //this is to hard code

void _timer_std()

{

 // set up the timer

 LPC_TMR16B0->PR = 1; // divide down to 12 = 1MHz

 LPC_TMR16B0->MCR |= BIT0 + BIT1; //interrupt and reset on MR0

 LPC_TMR16B0->MR0 = 350; // value for register to count to

 LPC_TMR16B0->TCR |= BIT0; // enable counter

}

void _init()

{

 LPC_SYSCON->SYSAHBCLKCTRL |= (1<<6); // enable clock to the GPIO so that we

can make use of them.

 LPC_SYSCON->SYSAHBCLKCTRL |= (1<<7); // enable clock to 16bit timer 0

 // set up pins as outputs and inputs

 _led_dir_set();

 // set pin high/low

 _led_pin_set();

 // set led power direction

 _power_dir_set();

 // set up the clock

 _timer_std();

}

///

/*

 * LED_Functions.c

 *

 * Created on: Nov 30, 2015

 * Author: Jake

30 | P a g e

 */

#include "LED_Functions.h"

#include "Calibration.h"

void _leds_off()

{

 // turn low off

 LPC_GPIO3->DATA &= ~(LED_Low_1 + LED_Low_2);

 LPC_GPIO0->DATA &= ~(LED_Low_3 + LED_Low_4 + LED_Low_5);

}

void _led_index_normal()

{

 led_index = led_index << 1;

 mask_i ++;

 if(led_index > BIT8)

 {

 led_index = BIT4;

 if(led_high_index == nLED_High_1)

 {

 LPC_GPIO0->DATA &= ~nLED_High_1; // turn high on

 LPC_GPIO0->DATA |= nLED_High_2;

 led_high_index = nLED_High_2;

 mask_i = 5; // resest mask

 }

 else

 {

 LPC_GPIO0->DATA &= ~nLED_High_2; // turn high on

 LPC_GPIO0->DATA |= nLED_High_1;

 led_high_index = nLED_High_1;

 mask_i = 0; // reset mask

 }

 }

}

#include "Calibration.h"

#define LED_PERIOD 100 // number of pulses each led gets

#define PULSE_CHECK 50 // number of pulses till led is checked if its high

(50 gives plenty of time for input to stabilize before checking)

unsigned char power_set_complete = 0;

// calibration function for all pins

void _power_pin_set()

31 | P a g e

{

 unsigned char power_select = 1;

 unsigned char led_not_seen = 0;

 power_set_complete = 0;

 // set the light high so we know we're in calibration

 LPC_GPIO1->DATA |= LED_SIG;

 LPC_GPIO0->DATA &= ~nLED_High_1;

 _power_up(power_select);

 // enable the counter interrupt

 NVIC_EnableIRQ(TIMER_16_0_IRQn);

 // while loop that performs the calibration

 while(power_set_complete == 0)

 {

 // if to increment leds

 if(pulse_count > LED_PERIOD)

 {

 led_active ^= 1; // toggle led active

 _leds_off(); // turn the high/low off

 pulse_count = 0; // reset pulse count

 // if leds are not active and it's not on the last LED then

increment index

 if(led_active == 0)

 {

 _led_index_normal();

 }

 // im going to test by only using the first led to make things a

little easier for troubleshooting

 // if the leds are off, it's on the last one, and the leds were

seen by the detectors; mark the power set function as complete

 if((led_active == 0) && (led_index >= LED_Low_5) &&

(led_high_index >= nLED_High_2) && (led_not_seen == 0))

 {

 power_set_complete=1;

 LPC_GPIO1->DATA &= ~LED_SIG;

 break;

 }

 }

 if(led_active == 1 && pulse_count > PULSE_CHECK && power_set_complete

== 0)

 {

 int i = 0;

 if(LPC_GPIO1->DATA & dec_mask[mask_i])

 {

32 | P a g e

 LPC_GPIO1->DATA |= LED_SIG;

 for(i = 0; i < delay; i++)

 {

 }

 LPC_GPIO1->DATA &= ~LED_SIG;

 }

 }

 // if the led was not seen by one or more detector ADD MORE POWER TIM

"THE TOOLMAN" TAYLOR STYLE

 if((led_not_seen == 1) && (led_active == 0))

 {

 power_select++; // increment power level

 if(power_select > 15)

 {

 power_select = 1;

 }

 _power_up(power_select); // set power pins to new level

 led_not_seen = 0; // reset the led not seen flag

 }

 } // end calibration while loop

 // turn led off when done

} // end _power_pin_set function

///

///////////////////////////

void _power_up(unsigned char power_lvl)

{

 // disable counter interrupt so we dont get out while doing this stuff.

 //NVIC_DisableIRQ(TIMER_16_0_IRQn);

 // need to reset led index each time to restart look

 if(power_set_complete == 0)

 {

 led_index = LED_Low_1;

 led_high_index = nLED_High_1;

 pulse_count = 0; // reset pulse count too

 }

 switch(power_lvl)

 {

 //set the outputs for LED Power based on the current power_select value

 case 1:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1;

33 | P a g e

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 break;

 case 2:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 1.495098 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 //power_lvl = 2;

 break;

 case 3:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 1.661765 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 //power_lvl = 3;

 break;

 case 4:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 1.818182 V

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 //power_lvl = 4;

 break;

 case 5:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 1.984848 V

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 case 6:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 2.06328 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 case 7:

 LPC_GPIO3->DATA |= LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 2.229947 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 case 8:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 2.5 V

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 break;

 case 9:

34 | P a g e

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 2.66667 V

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 break;

 case 10:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 2.745098 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 break;

 case 11:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 2.911765 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA |= LEDPOWER3;

 break;

 case 12:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 3.068182 V

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 case 13:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 3.234848 V

 LPC_GPIO0->DATA |= LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 case 14:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA |= LEDPOWER1; // 3.31328 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 case 15:

 LPC_GPIO3->DATA &= ~LEDPOWER0;

 LPC_GPIO2->DATA &= ~LEDPOWER1; // 3.479947 V

 LPC_GPIO0->DATA &= ~LEDPOWER2;

 LPC_GPIO0->DATA &= ~LEDPOWER3;

 break;

 } // end case statements

} // end _power_up

///

///////////////////////////

